

Pergamon

Cyclization of bis(acylsilanes) under nucleophilic activation. Competitive [1,2] carbone to oxygen and [1,4] oxygen to oxygen silyl migration

D. Saleur, J.-P. Bouillon and C. Portella*

Laboratoire 'Réactions Sélectives et Applications', Associé au CNRS (UMR 6519), Université de Reims, Faculté des Sciences, B.P. 1039, 51687 Reims Cedex 2, France

Received 17 May 2001; revised 13 July 2001; accepted 20 July 2001

Abstract—Cyclization of 1,5- and 1,6-bis(acylsilanes) with potassium cyanide gave new silvlated cycloalcanones via a multistep sequence combining nucleophilic addition, two silvl migrations and β-elimination. The nature of the products is very dependent on the competition between [1,2] carbon to oxygen and [1,4] oxygen to oxygen silyl migration. © 2001 Elsevier Science Ltd. All rights reserved.

The propensity of acylsilanes¹ to undergo a [1,2] C to O silyl migration (Brook rearrangement)² under nucleophilic attack is one of the more attractive properties of these compounds. The combination of such a rearrangement with subsequent steps allows various possibilities in 'tandem bond formation strategies'.3 Of particular interest, cyclic compounds can be obtained when the subsequent steps involve a function which is present either in the incoming nucleophile or in the starting acylsilane.

Bis(acylsilanes)⁴ are particular bifunctional acylsilanes the reactivity of which has been studied less. Besides cyclization not involving any Brook rearrangement, such as etherification⁵ and aldolization,^{4,6} some papers reported transformations where C to O silyl migration step occurred. On the one hand, macrocyclization by McMurry coupling was accompanied by products coming from some Brook rearrangement.7 On the other hand, the Brook rearrangement is a crucial step in the conversion of bis(acylsilanes) into cyclic 2,2-difluoro-3trialkylsilyl ketols by the reaction sequence: nucleophilic trifluoromethylation-Brook rearrangementfluoride elimination–Mukaiyama type aldol cyclization.8 We now present the results of an exploratory investigation of a domino rearrangement of 1,5- and 1,6-bis-(acylsilanes) induced by potassium cyanide.

OSiR₃

Scheme 1.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01312-0

^{*} Corresponding author. Fax: 33 326913166; e-mail: charles.portella@univ-reims.fr

Scheme 2. Ref. 12

We anticipated that a reaction sequence starting with a nucleophilic attack on one acylsilane function, followed by a Brook rearrangement, should lead to an intramolecular addition which itself could induce a second Brook rearrangement (Scheme 1). If the nucleophilic reagent also has a good nucleofugal character, a β -elimination should occur to give the bis(silylated) enol ether. Cyanides are good candidates as they exhibit the dual nucleophilic+nucleofugal properties. The cyanation of simple acylsilanes by trimethylsilylcyanide yields the corresponding silylated cyanohydrine. When an ammonium cyanide or potassium cyanide was used, the Brook rearrangement occurred. 10,11

The results of the reaction of the 1,5-bis(acylsilane) 1 with potassium cyanide in various conditions are summarized in Scheme 2 and in Table 1.¹² Generally, a mixture of two cyclized products 2¹³ and 3¹⁴ was obtained. The expected compound 3 is indeed formed, but as the minor component of the mixture.

An examination of Table 1 (entries 1–4) shows that, even if the reaction pathway is catalytic in cyanide ion (Scheme 1), a stoichiometric amount of potassium cyanide is needed in order to obtain compounds 2 and 3 in moderate to good yields. The reaction is fast, since a 90% conversion was achieved after 5 min (entry 1). Too long a reaction time gave lower yields of both products (entries 1, 3). Other polar aprotic solvents as DMF, CH₃CN or sulfolane gave very poor yields of products 2, 3, even for total conversion of 1. THF or CH₂Cl₂ allowed a similar reaction if potassium cyanide is activated with a crown ether (entries 5, 6). When the reaction was performed under high dilution conditions (entry 7), compound 2 was isolated in 49% yield.

As far as we know, this is the first domino reaction involving two Brook rearrangements. The carbonylated compound 2 has lost one C-Si bond to the benefit of one O-Si bond. It seems reasonable to consider a [1,4] oxygen to oxygen silyl migration to explain the formation of 2 (Scheme 3). Hence, compounds 2 and 3 result from a competition between a [1,4] O to O and a [1,2] C to O silyl migration, after the C-C bond forming step leading to the intermediate 4 (Scheme 3).

The extension of the procedure to the 1,6-bis(acylsilane) 5 gave a mixture of three products including the homologous carbonylated compound 6,15 the cyclohexadiene compound 7,16 and an unexpected cyclopentenic derivative 817 (Scheme 4).

Compound 6 is the result of a pathway similar to the one described in Scheme 3, involving a [1,4] O to O silyl

Scheme 3.

Table 1. Reaction of bis(acylsilane) 1 with KCN

Entry	KCN (equiv.) ^a	Solvent	Time (min)	Conv. (%)	Yield 2 (%)b	Yield 3 (%)b
1	1.0	DMSO	5	90	40	20
2	1.0	DMSO	15	100	46	13
3	1.0	DMSO	30	100	25	5
4	0.5	DMSO	15	89	34	12
5	1.0	THF^{c}	180	100	27	10
6	1.0	CH ₂ Cl ₂ ^c	180	100	48 ^d	48 ^d
7	1.0	DMSOe	5	100	49	_

^a Room temperature. Substrate concentration: 0.3 M.

^b The products 2 and 3 were purified by column chromatography on silica gel (petroleum ether/AcOEt 97/3).

c 18-Crown-6 (0.3 equiv.).

^d Mixture of compounds 2 and 3.

^e Substrate concentration: 0.075 M.

Scheme 4. Ref. 12

$$\begin{array}{c}
 & \text{CN} \\
 & \text{OTBS} \\
 & \text{OH} \\
 & \text{TBS}
\end{array}$$

Scheme 5.

migration. Product 7 could come from the trapping of the intermediate 4 (n=2) by some water in the reaction medium (Scheme 5). The cyclopentenic derivative 8 probably comes from further transformations of the compound resulting from an intramolecular aldol condensation of 5.4

In summary, these results show that a simple activation of 1,5- and 1,6-bis(acylsilanes) with cyanide ions is able to induce a multistep transformation combining two silyl migrations with nucleophilic additions (inter- then intramolecular) and β -elimination (Scheme 1). Unfortunately, it seems difficult to obtain a high selectivity between the two competitive [1,2] C to O and [1,4] O to O silyl migrations. Nethertheless, these reactions allowed new silylated cyclic compounds to be prepared.

References

- Reviews: (a) Ricci, A.; Degl'Innocenti, A. Synthesis 1989, 647–660; (b) Page, P. C. B.; Klair, S. S.; Rosenthal, S. Chem. Soc. Rev. 1990, 19, 147–195; (c) Cirillo, P. F.; Panek, J. S. Org. Prep. Proc. Int. 1992, 24, 555–582; (d) Najera, C.; Yus, M. Org. Prep. Proc. Int. 1995, 27, 400–456; (e) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. Gazz. Chim. Ital. 1997, 127, 619–628; (f) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. J. Organomet. Chem. 1998, 567, 181–189.
- 2. (a) Brook, A. G. Acc. Chem. Res. 1974, 7, 77–84; (b) Brook, A. G.; Bassindale, A. R. Rearrangements in Ground and Excited States; Academic Press: New York, 1980; pp. 149–227.
- 3. Moser, W. H. Tetrahedron 2001, 57, 2064-2084.
- 4. Bouillon, J.-P.; Portella, C. Eur. J. Org. Chem. 1999, 1571–1580.
- Chuang, T.-H.; Fang, J.-M.; Jiaang, W.-T.; Tsai, Y.-M. J. Org. Chem. 1996, 61, 1794–1805.
- Doussot, P.; Portella, C. J. Org. Chem. 1993, 58, 6675–6680.
- Fürstner, A.; Seidel, G.; Gabor, B.; Kopiske, C.; Krüger, C.; Mynott, R. Tetrahedron 1995, 51, 8875–8888.

- (a) Saleur, D.; Brigaud, T.; Bouillon, J.-P.; Portella, C. Synlett 1999, 432–434; (b) Saleur, D.; Bouillon, J.-P.; Portella, C. J. Org. Chem. 2001, 66, 4543–4548.
- Cunico, R. F.; Kuan, C. P. J. Org. Chem. 1990, 55, 4634–4638.
- Reich, H. J.; Holtan, R. C.; Bolm, C. J. Am. Chem. Soc. 1990, 112, 5609–5617.
- Takeda, K.; Ohnishi, Y. Tetrahedron Lett. 2000, 41, 4169–4172.
- 12. Typical procedure for the reaction of bis(acylsilane) with KCN (Table 1: entry 1): To a solution of bis(acylsilane) 1 (329 mg, 1.0 mmol) in dry DMSO (3.5 mL), under an argon atmosphere, was added dry potassium cyanide (65 mg, 1.0 mmol). After stirring at room temperature for 5 min, the crude mixture was purified by column chromatography on silica gel (petroleum ether/AcOEt (97/3)) to give compound 2 (131 mg, 40 %) and compound 3 (66 mg, 20 %).
- 13. Spectral data for compound **2.** Oil. ¹H NMR (CDCl₃) δ (ppm): -0.04 (s, 3H), 0.06 (s, 3H), 0.07 (s, 3H), 0.16 (s, 3H), 0.88 (s, 9H), 0.99 (s, 9H), 1.6–2.1 (m, 3H), 2.1–2.3 (m, 2H), 2.70 (m, 1H). ¹³C NMR (CDCl₃) δ (ppm): -7.0 (CH₃), -6.1 (CH₃), -2.71 (CH₃), -2.69 (CH₃), 16.5 (CH₂), 18.4 (C₄), 18.8 (C₄), 25.8 (CH₃), 27.5 (CH₃), 34.7 (CH₂), 35.3 (CH₂), 83.5 (C₄), 218.5 (CO). IR (film, cm⁻¹): 1727. GC–MS (*m*/*e*): 328 (M⁺), 155, 147, 73.
- 14. Spectral data for compound 3. Oil. ¹H NMR (CDCl₃) δ (ppm): 0.13 (s, 12H), 0.94 (s, 18H), 1.75 (quint, 2H, J=6.9 Hz), 2.24 (t, 4H, J=6.9 Hz). ¹³C NMR (CDCl₃) δ (ppm): -3.9 (CH₃), 17.0 (CH₂), 18.1 (C₄), 25.7 (CH₃), 30.3 (CH₂), 130.9 (C₄). IR (film, cm⁻¹): 1703. GC–MS (m/e): 328 (M⁺), 197, 155, 147.
- 15. Spectral data for compound **6**. Oil. ¹H NMR (CDCl₃) δ (ppm): -0.03 (s, 3H), 0.15 (s, 3H), 0.18 (s, 3H), 0.29 (s, 3H), 0.87 (s, 9H), 0.90 (s, 9H), 1.5–1.9 (m, 4H), 2.0–2.1 (m, 1H), 2.3–2.6 (m, 3H). ¹³C NMR (CDCl₃) δ (ppm): -5.6 (CH₃), -3.9 (CH₃), -2.4 (CH₃), -2.1 (CH₃), 18.8 (2×C₄), 23.9 (CH₂), 26.2 (CH₃), 26.6 (CH₂), 27.3 (CH₃), 40.4 (CH₂), 41.7 (CH₂), 83.8 (C₄), 211.0 (CO). IR (film, cm⁻¹): 1697. GC–MS (*m*/*e*): 342 (M⁺), 285, 189, 147.
- 16. Spectral data for compound 7. Oil. ¹H NMR (CDCl₃) δ (ppm): 0.13 (s, 6H), 0.14 (s, 6H), 0.90 (s, 9H), 0.94 (s, 9H), 2.4–2.5 (m, 2H), 2.5–2.6 (m, 2H), 6.1 (m, 1H), 6.5 (m, 1H). ¹³C NMR (CDCl₃) δ (ppm): –5.4 (CH₃), –5.0 (CH₃), 16.9 (C₄), 18.2 (C₄), 25.6 (CH₃), 26.1 (CH₂), 26.9 (CH₃), 33.0 (CH₂), 133.2 (CH), 135.3 (C₄), 139.6 (C₄), 146.0 (CH). GC–MS (*m*/*e*): 324 (M⁺), 267, 147, 133.
- 17. Spectral data for compound **8**. Oil. ¹H NMR (CDCl₃) δ (ppm): 0.24 (s, 6H), 0.92 (s, 9H), 1.85 (quint, 2H, J=7.6 Hz), 2.63 (tm, 2H, J=7.6 Hz), 2.70 (tm, 2H, J=7.6 Hz), 9.95 (s, 1H). ¹³C NMR (CDCl₃) δ (ppm): -3.8 (CH₃), 17.2 (C₄), 23.1 (CH₂), 26.5 (CH₃), 31.9 (CH₂), 42.2 (CH₂), 155.6 (C₄), 167.1 (C₄), 191.0 (CO). IR (film, cm⁻¹): 1672. GC–MS (m/e, CI): 229 (M+1), 228 (M⁺), 211, 132.